GM Service Manual Online
For 1990-2009 cars only

Circuit Description

The fuel tank pressure (FTP) sensor measures the difference between the air pressure or vacuum in the evaporative emission (EVAP) system, and the outside air pressure. The control module supplies a 5-volt reference and a low reference circuit to the FTP sensor. The FTP sensor signal circuit voltage varies depending on EVAP system pressure or vacuum. If the FTP sensor signal voltage increases above a calibrated value, this DTC sets.

The following table illustrates the relationship between FTP sensor signal voltage and the EVAP system pressure/vacuum.

FTP Sensor Signal Voltage

Fuel Tank Pressure

High, Approximately 1.5 Volts or More

Negative Pressure/Vacuum

Low, Approximately 1.5 Volts or Less

Positive Pressure

DTC Descriptor

This diagnostic procedure supports the following DTC:

DTC P0453 Fuel Tank Pressure (FTP) Sensor Circuit High Voltage

Conditions for Running the DTC

The ignition is ON.

Conditions for Setting the DTC

    • The FTP sensor voltage is more than 4.9 volts.
    • The above condition is present for more than 5 seconds.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the MIL after 2 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Test Description

The number below refers to the step number on the diagnostic table.

  1. If DTC P0651 set, the 5-volt reference circuit may be shorted to a voltage.

Step

Action

Values

Yes

No

Schematic Reference: Engine Controls Schematics

Connector End View Reference: Engine Controls Connector End Views or Powertrain Control Module Connector End Views

1

Did you perform the Diagnostic System Check - Vehicle?

--

Go to Step 2

Go to Diagnostic System Check - Vehicle in Vehicle DTC Information

2

  1. Idle the engine for one minute.
  2. Monitor the DTC information using the scan tool.

Did DTC P0641 or P0651 fail this ignition?

--

Go to Diagnostic Trouble Code (DTC) List - Vehicle in Vehicle DTC Information

Go to Step 3

3

  1. Turn ON the ignition, with the engine OFF.
  2. Observe the Fuel Tank Pressure sensor parameter with a scan tool.

Is the Fuel Tank Pressure sensor parameter more than the specified value?

4.3 V

Go to Step 5

Go to Step 4

4

  1. Clear the DTCs with a scan tool.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records.

Did the DTC fail this ignition?

--

Go to Step 5

Go to Intermittent Conditions

5

  1. Turn OFF the ignition.
  2. Disconnect the fuel tank pressure (FTP) sensor harness connector. Refer to Fuel Tank Pressure Sensor Replacement .
  3. Turn ON the ignition, with the engine OFF.
  4. Observe the Fuel Tank Pressure sensor parameter with a scan tool.

Is the Fuel Tank Pressure sensor parameter more than the specified value?

4.3 V

Go to Step 6

Go to Step 7

6

Test the FTP signal circuit for a short to voltage or a short to a 5-volt reference circuit. Refer to Testing for a Short to Voltage and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 13

Go to Step 12

7

Probe the low reference circuit of the FTP sensor with a test lamp that is connected to battery voltage. Refer to Troubleshooting with a Test Lamp in Wiring Systems.

Does the test lamp illuminate?

--

Go to Step 9

Go to Step 8

8

Test the low reference circuit of the FTP sensor for an open. Refer to Testing for Continuity and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 13

Go to Step 10

9

Test for an intermittent and for a poor connection at the FTP sensor. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 13

Go to Step 11

10

Test for an intermittent and for a poor connection at the control module. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 13

Go to Step 12

11

Replace the FTP sensor. Refer to Fuel Tank Pressure Sensor Replacement .

Did you complete the replacement?

--

Go to Step 13

--

12

Replace the powertrain control module (PCM). Refer to Control Module References in Computer/Integrating Systems for replacement, setup, and programming.

Did you complete the replacement?

--

Go to Step 13

--

13

  1. Clear the DTCs with a scan tool.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records.

Did the DTC fail this ignition?

--

Go to Step 2

Go to Step 14

14

Observe the Capture Info with a scan tool.

Are there any DTCs that have not been diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List - Vehicle in Vehicle DTC Information

System OK