The Air Delivery description and operation is divided into 4 areas:
• | HVAC control components |
• | Air Speed |
• | Air Distribution |
• | Recirculation Operation |
The HVAC control module is a Class 2 device that interfaces between the operator and the HVAC system to maintain air temperature and distribution settings. The ignition 3 and battery positive voltage circuits provide power to the control module. The control module supports the following features:
Feature | Availability |
---|---|
Afterblow | No |
Purge | No |
Personalization | No |
Actuator Calibration | No |
The mode actuator is a 3 wire bi-directional electric motor. Ignition 3 voltage, ground and control circuits enable the actuator to operate. The control circuit uses a 0-12 volt linear-ramped signal to command the actuator movement. The 0 and 12 volt control values represent the opposite limits of the actuator range of motion. The values in between 0 and 12 volts correspond to the positions between the limits.
When the HVAC control module sets a commanded, or targeted, value, the control signal is set to a value between 0-12 volts. The actuator shaft rotates until the commanded position is reached. The module will maintain the control value until a new commanded value is needed.
The recirculation actuator is a 3 wire bi-directional electric motor. Ignition 3 voltage, ground and control circuits enable the actuator to operate. The control circuit is either grounded or opened during normal operation. If the control circuit is grounded, then the shaft rotates in the opposite direction than it would if the circuit was opened. The actuator shaft rotates until the limit is reached. If the module needs to reverse the direction of rotation, then the control circuit's state is reversed. The open circuits are held at ignition 3 voltage from the actuator. The module will maintain the control circuit's state until a new position is needed.
The blower motor control processor is an interface between the HVAC control module and the blower motor. The blower motor speed control, battery positive voltage and ground circuits enable the control processor to operate. The HVAC control module provides a PWM signal to the control processor in order to command the blower motor speed. The processor supplies 12 volts to the blower motor through the blower motor voltage supply circuit. The control processor uses the blower motor ground as a low side control to adjust the blower motor speed.
The blower motor forces air to circulate within the vehicle's interior. The vehicle operator determines the blower motor's speed by placing the blower motor switch in a desired speed position. The blower motor will only operate if the blower motor switch is in any position other than OFF, and the ignition switch is in the RUN position. Once a blower speed is selected, the blower speed remains constant until a new speed is selected.
As the requested blower speed increases, the following conditions occur:
• | The HVAC control module increases the amount of time that the blower motor speed control circuit is modulated to ground. |
• | The voltage and duty cycle, measured between the blower motor speed control circuit and ground, decrease. |
As the requested blower speed decreases, the following conditions occur:
• | The HVAC control module decreases the amount of time that the blower motor speed control circuit is modulated to ground. |
• | The voltage and duty cycle, measured between the blower motor speed control circuit and ground, increase. |
The HVAC control module controls the mode actuator in order to distribute airflow to a desired outlet. The mode switch provides the vehicle operator with the ability to override the automatic setting. When the mode door is moved to the defrost position, the A/C compressor clutch engages and the recirculation actuator will be moved to the outside air position. Regardless of the mode setting, a small amount of air will be diverted to the defrost ducts to reduce windshield fogging. When VENT is pressed, the following will occur:
• | The mode actuator will be moved to the panel position |
• | The recirculation actuator will be placed in the outside air position |
• | The A/C compressor will be commanded off |
After a malfunction occurs to the mode actuator it is driven to the Defrost position On startup, the HVAC control module will place the mode door in the last selected position.
The HVAC control module controls the air intake through the recirculation actuator. Recirculation is not available when the mode is in defrost. When the mode is in defog, Recirculation will only be available for ten minutes. The operator must activate the blower for Recirculation operation. The A/C high-pressure recirculation switch can cause the HVAC system to recirculate air. If the recirculation switch is pressed into the ON position when the mode switch is in an unavailable mode position, then the recirculation switch LED will flash three times. When the high side pressure reaches 2206-2620 kPa (320-380 psi), the PCM will place the HVAC system in recirculation mode. The high side pressure is lowered when the inside air cools the refrigerant within the A/C evaporator. When the high-side pressure reaches 1447-1861 kPa (210-270 psi), the PCM will place the HVAC system out of recirculation mode.