GM Service Manual Online
For 1990-2009 cars only

The air temperature controls are divided into 4 areas:

    • HVAC Control Components
    • Heating and A/C Operation
    • Engine Coolant
    • A/C Cycle

HVAC CONTROL COMPONENTS

HVAC Control Assembly

The HVAC control assembly is a non-Class 2 device that interfaces between the operator and the HVAC system to maintain air temperature and distribution settings. The battery positive and ignition 3 voltage circuits provide power to the control assembly. Three integrated potentiometers control mode and air temperature door positions and blower motor speed. The control assembly communicates the mode door position to the vacuum control assembly through five solenoid control circuits. The control assembly supports the following features:

Feature

Availability

Afterblow

No

Purge

No

Personalization

No

Actuator Calibration

No

Air Temperature Actuator

The actuator is a 3 wire bi-directional electric motor. Ignition 3 voltage, ground and control circuits enable the actuator to operate. The control circuit uses a 0-12 volt linear-ramped signal to command the actuator movement. The 0 and 12 volt control values represent the opposite limits of the actuator range of motion. The values in between 0 and 12 volts correspond to the positions between the limits.

When the HVAC control module sets a commanded, or targeted, value, the control signal is set to a value between 0-12 volts. The actuator shaft rotates until the commanded position is reached. The module will maintain the control value until a new commanded value is needed.

A/C Refrigerant Pressure Sensor

The A/C refrigerant pressure sensor is a 3 wire piezoelectric pressure transducer. A 5 volt reference, low reference, and signal circuits enable the sensor to operate. The A/C pressure signal can be between 0-5 volts. When the A/C refrigerant pressure is low, the signal value is near 0 volts. When the A/C refrigerant pressure is high, the signal value is near 5 volts.

The A/C refrigerant pressure sensor protects the A/C system from operating when an excessively high or low pressure condition exists. The PCM disables the compressor clutch under the following conditions:

    • A/C pressure is more than 2979 kPa (432 psi). The clutch will be enabled after the pressure decreases to less than 1510 kPa (219 psi).
    • A/C pressure is less than 186 kPa (27 psi). The clutch will be enabled after the pressure increases to more than 207 kPa (30 psi).

Heating and A/C Operation

The purpose of the heating and A/C system is to provide heated and cooled air to the interior of the vehicle. The A/C system will also remove humidity from the interior and reduce windshield fogging. The vehicle operator can determine the passenger compartment temperature by adjusting the air temperature switch. Regardless of the temperature setting, the following can effect the rate that the HVAC system can achieve the desired temperature:

    • Recirculation
    • Difference between inside and desired temperature
    • Difference between ambient and desired temperature
    • Blower motor speed setting
    • Mode setting

The A/C system can be engaged by pressing the A/C switch. The A/C switch will illuminate when the A/C switch is pressed to the on position. The following conditions must be met in order for the PCM to turn on the compressor clutch:

    • Engine coolant temperature (ECT) is than 124°C (255°F)
    • Engine RPM is less than 5000 RPM
    • A/C Pressure is between 2979-186 kPa (432-27 psi)

Once engaged, the compressor clutch will be disengaged for the following conditions:

    • Throttle position is 100%
    • A/C Pressure is more than 2979 kPa (432 psi)
    • A/C Pressure is less than 186 kPa (27 psi)
    • Engine coolant temperature (ECT) is more than 124°C (255°F)
    • Engine speed is more than 5000 RPM
    • Transmission shift
    • PCM detects excessive torque load
    • PCM detects insufficient idle quality
    • PCM detects a hard launch condition

When the compressor clutch disengages, the compressor clutch diode protects the electrical system from a voltage spike.

Engine Coolant

Engine coolant is the key element of the heating system. The thermostat controls engine operating coolant temperature. The thermostat also creates a restriction for the cooling system that promotes a positive coolant flow and helps prevent cavitation. Coolant enters the heater core through the inlet heater hose, in a pressurized state.

The heater core is located inside the HVAC module. The heat of the coolant flowing through the heater core is absorbed by the ambient air drawn through the HVAC module. Heated air is distributed to the passenger compartment, through the HVAC module, for passenger comfort.

The amount of heat delivered to the passenger compartment is controlled by opening or closing the HVAC module air temperature door. The coolant exits the heater core through the return heater hose and recirculated back through the engine cooling system.