The fuel metering system is made up of the following parts:
• | Fuel supply components (fuel tank, pump, and lines). |
• | Fuel pump electrical circuit. |
• | Fuel rail assembly, including: |
- | Fuel pressure regulator. |
• | Throttle body assembly, including: |
- | Idle air control (IAC) valve. |
- | Throttle position (TP) sensor. |
Fuel Pump Electrical Circuit
When the ignition switch is turned to the ON position, the PCM energizes
the fuel pump relay for 2 seconds allowing the fuel pump to pressurize the
fuel system.
An inoperative fuel pump relay will cause a no start.
Accelerator Controls
The accelerator control system is a cable type and there are no linkage
adjustments. Therefore, the only specific cable for each application must
be used. When work has been performed on the accelerator controls,
always make sure that all components are installed correctly and that
the linkage and cables are not rubbing or binding in any manner. The
throttle should operate freely without binding between full closed
and wide open throttle.
Fuel Injectors
The fuel injector assembly
is a solenoid-operated device, controlled by the PCM, that meters pressurized
fuel to a single engine cylinder. The PCM energizes the fuel injector
solenoid (3), which opens a ball valve (1), allowing fuel to flow
past the ball valve, and through a recessed flow director plate (2)
at the injector outlet. The director plate has machined holes that
control the fuel flow, generating a conical spray pattern of finely
atomized fuel at the injector tip. Fuel from the tip is directed at
the intake valve, causing it to become further atomized and vaporized
before entering the combustion chamber. A fuel injector that is stuck
partly open would cause loss of pressure after the engine is shut
down, so long crank times would be noticed on some engines. Dieseling
could also occur because some fuel could be delivered to the engine
after the ignition is turned OFF.
Fuel Pressure Regulator Assembly
The fuel pressure regulator
assembly is a diaphragm-operated relief valve with fuel pump pressure on
one side, and a regulator spring pressure and intake manifold vacuum
on the other side. The regulator's function is to maintain a constant
pressure differential across the injectors at all times. The pressure
regulator compensates for engine load by increasing the fuel pressure
as the engine vacuum drops. The fuel pressure regulator is serviced
as a complete assembly. With the ignition ON and engine OFF (zero vacuum),
fuel pressure should be 284-325 kPa (41-47 psi). Whenever
the pressure is too low, poor performance and a DTC P0171 could
result. Whenever the pressure is too high, excessive odor and a DTC P0172
could result.
Throttle Position (TP) Sensor
The nonadjustable, throttle shaft-driven TP sensor is mounted on the
throttle body assembly opposite the throttle cam lever. The TP sensor
senses the throttle valve angle and relays the information to the powertrain
control module (PCM). Knowledge of throttle angle is needed
by the PCM to properly control the injector control signals
(pulses).
Idle Air Control (IAC) Valve Assembly
Engine idle speed is controlled by the PCM through the IAC valve (1)
mounted on the throttle body. The PCM sends voltage pulses to the IAC valve
motor windings causing the IAC valve pintle (3) to move IN (toward
the seat) or OUT (away from the seat) a given distance (a step or count)
for each pulse. The commanded location (steps away from the seated
position) can be observed as a number of counts displayed on a scan
tool. The pintle movement controls the airflow around the throttle
valve (2), which in turn, controls engine idle speed: Pintle Extended=Decrease
RPM=Lower Counts. Pintle Retracted=Increase RPM=Higher Counts.
• | The controlled or desired idle speed for all engine operating
conditions is programmed into the EEPROM of the PCM. The programmed engine
speeds are based on coolant temperature, park/neutral switch status,
vehicle speed, battery voltage, and A/C refrigerant pressure (if equipped). |
• | The PCM learns the proper IAC valve positions to achieve warm,
stabilized idle speeds (RPM), desired for the various conditions (P/N or Drive,
A/C ON or OFF, if equipped). This information is stored in PCM Keep
Alive memories (information is retained after ignition is OFF). All
other IAC valve positioning is calculated based on these memory values.
As a result, engine variations due to wear, and variations in minimum
throttle valve position (within limits) do not affect engine idle speeds.
This system provides correct idle control under all conditions. This
also means that disconnecting power to the PCM can result in incorrect
idle control or the necessity to partially depress the accelerator
when starting, until the PCM relearns idle control. |
• | Engine idle speed is a function of total airflow into the engine
based on IAC valve pintle position plus throttle valve opening plus calibrated
vacuum loss through accessories. |
• | The minimum throttle valve position is set at the factory with
a stop screw. This setting allows enough air flow by the closed throttle valve
to cause the IAC valve pintle to be positioned a calibrated number
of steps (counts) from the seat during controlled idle operation. The
minimum throttle valve position for this engine is not the same as
the minimum idle speed associated with other fuel injected engines.
The throttle stop screw is filled at the factory following an adjustment. |
| Important: Do Not try to remove the filler and readjust the stop screw. Misadjustment
may set a DTC P0506 or a DTC P0507.
|
• | The PCM normally resets the IAC valve pintle position once during
each ignition cycle when vehicle speed increases above 20 mph on moderate
acceleration. During the reset, the PCM commands the IAC valve pintle
to retract completely, then move IN to the seated position (to establish
the zero count position), and then back out to the desired position.
The IAC is relearned only once per ignition cycle. |
• | The IAC valve also can be reset without driving the vehicle by
using this service procedure: |
1. | Turn ON the ignition, with the engine OFF. |
2. | Turn OFF ignition for ten seconds. |
3. | Start engine and test for proper idle operation. |
• | Whenever the IAC valve is disconnected and reconnected while the
engine is running, the resulting IAC valve counts may not correspond with
the actual IAC valve pintle position. When servicing the IAC valve,
it should only be disconnected or connected after the ignition has
been OFF for at least 10 seconds. This allows time for the PCM to move
the IAC valve to the 150 count position where it is parked while the
ignition is OFF. Whenever this procedure is not followed, the PCM will
lose track of IAC valve position resulting in starting or idle control
problems until the IAC valve is reset and pintle position is relearned. |
• | IAC system problems may cause improper idle speeds, resulting
in a DTC P0506 or a DTC P0507. The DTC P0506 or the DTC P0507
tables should be used to diagnose these problems. |