The powertrain control module (PCM) supplies a bias voltage of about 450 mV between the heated oxygen sensor (HO2S) high signal and low signal circuits. When measured with a 10-megaohm Digital Multimeter (DMM), this may display as low as 320 mV. The oxygen sensor varies the voltage within a range of about 1000 mV when the exhaust is rich, down through about 10 mV when exhaust is lean. The PCM constantly monitors the HO2S signal during closed loop operation and compensates for a rich or lean condition by decreasing or increasing injector pulse width as necessary. If the HO2S 1 voltage remains at or near the 450 mV bias for an extended period of time, diagnostic trouble code (DTC) P0134 will set.
• | DTCs P0101, P0102, P0103, P0107, P0108, P0112, P0113, P0117, P0118, P0121, P0122, P0123, P0125, P0128, P0201, P0202, P0203, P0204, P0205, P0206, P0410, P0440, P0442, P0443, P0446, P0449, or P1441 are not set. |
• | The engine run time is longer than 200 seconds. |
The HO2S 1 signal voltage remains between 400--500 mV for more than 30 seconds.
• | The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails. |
• | The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records. |
• | The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail. |
• | A current DTC, Last Test Failed, clears when the diagnostic runs and passes. |
• | A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic. |
• | Clear the MIL and the DTC with a scan tool. |
The numbers below refer to the step numbers on the diagnostic table.
When the system is operating correctly, the HO2S voltage should toggle above and below the specified values.
If the HO2S low signal circuit is shorted to ground, the HO2S voltage will be less than 400 mV when the HO2S high signal circuit is jumped to ground.
The specified value is what is measured on a correctly-operating system.
The specified value is what is measured on a correctly-operating system.
Step | Action | Values | Yes | No | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Schematic Reference: Engine Controls Schematics | ||||||||||
1 | Did you perform the Diagnostic System Check-Engine Controls? | -- | Go to Step 2 | |||||||
Important: If any other DTCs are set except the HO2S DTCs, refer to other DTCs first before proceeding with this table.
Does scan tool indicate that the HO2S voltage varies outside the specified values? | 400-500 mV | Go to Step 3 | Go to Step 4 | |||||||
3 | Operate vehicle within the Failure Records conditions. Does the scan tool indicate this DTC failed this ignition? | -- | Go to Step 4 | Go to Intermittent Conditions | ||||||
4 | Inspect and test for the following conditions:
Did you find and correct the condition? | -- | Go to Step 15 | Go to Step 5 | ||||||
Does the scan tool indicate that the HO2S voltage is more than the specified value? | 400 mV | Go to Step 6 | Go to Step 10 | |||||||
Does the voltage measure near the specified value? | 4.5 V | Go to Step 7 | Go to Step 9 | |||||||
Measure the voltage on the HO2S low signal circuit on the PCM side, using a DMM that is connected to a good ground. Does the voltage measure near the specified value? | 5 V | Go to Step 11 | Go to Step 8 | |||||||
8 | Test the HO2S low signal circuit for an open or for high resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 15 | Go to Step 13 | ||||||
9 | Test the HO2S high signal circuit for an open or for high resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 15 | Go to Step 13 | ||||||
10 | Test the HO2S low signal circuit for a short to ground. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 15 | Go to Step 14 | ||||||
11 | Test for poor connections at the HO2S. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 15 | Go to Step 12 | ||||||
12 |
Important: Determine the cause of the contamination before replacing the sensor. Inspect and test for the following conditions:
Replace the affected HO2S sensor. Refer to Heated Oxygen Sensor 1 Replacement . Did you complete the replacement? | -- | Go to Step 15 | -- | ||||||
13 | Test for poor connections at the PCM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 15 | Go to Step 14 | ||||||
14 | Replace the PCM. Refer to Powertrain Control Module Replacement . Did you complete the replacement? | -- | Go to Step 15 | -- | ||||||
15 |
Does the DTC run and pass? | -- | Go to Step 16 | Go to Step 2 | ||||||
16 | With a scan tool observe the stored information in Capture Info. Does the scan tool display any DTCs that have not been diagnosed? | -- | System OK |