GM Service Manual Online
For 1990-2009 cars only

Circuit Description

Heated oxygen sensors (HO2S) are used for fuel control and post catalyst monitoring. Each HO2S compares the oxygen content of the surrounding air with the oxygen content of the exhaust stream. When the vehicle is first started, the powertrain control module (PCM) operates in an Open Loop mode, ignoring the HO2S signal voltage when calculating the air-to-fuel ratio. The PCM supplies the HO2S with a reference, or bias, voltage of about 450 mV. The HO2S generates a voltage within a range of 0-1,000 mV that fluctuates above and below bias voltage once the sensor reaches operating temperature. A high HO2S voltage output indicates a rich fuel mixture. A low HO2S voltage output indicates a lean mixture. Heating elements inside the HO2S minimize the time required for the sensors to reach operating temperature, and provide an accurate voltage signal. If the PCM detects that the HO2S 2 voltage remains above a calibrated amount for an excessive amount of time, DTC P0138 will set.

Conditions for Running the DTC

    • DTCs P0101, P0102, P0103, P0106, P0107, P0108, P0112, P0113, P0116, P0117, P0118, P0121, P0122, P0123, P0201-P0208, P0410, P0412, P0418, P0419, P0442, P0443, P0446, P0449, P0455 are not set.
    • The system voltage is between 10-18 volts.
    • The TP Sensor parameter is between 3-25 percent.
    • The Loop Status parameter is closed.
    • The Air Fuel Ratio parameter is between 14.5-14.8.
    • The above conditions are met for 3 seconds.

Conditions for Setting the DTC

The PCM detects that the HO2S 2 voltage is more than 1000 mV, for more than 200 seconds.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Step

Action

Values

Yes

No

Schematic Reference: Engine Controls Schematics

Connector End View Reference: Powertrain Control Module Connector End Views or Engine Controls Connector End Views

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

  1. Allow the engine to idle at operating temperature. Refer to Scan Tool Data List .
  2. Observe the HO2S bank 1 sensor 2 voltage parameter with a scan tool.
  3. Vary the engine speed from idle to 3,000 RPM several times within 5 seconds.

Does the voltage fluctuate above and below the specified range during the above test?

400-520 mV

Go to Step 3

Go to Step 4

3

  1. Observe the Freeze Frame/Failure Records for this DTC.
  2. Turn OFF the ignition for 60 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records.

Did the DTC fail this ignition?

--

Go to Step 4

Go to Intermittent Conditions

4

  1. Turn OFF the ignition.
  2. Disconnect the heated oxygen sensor (HO2S) 2.
  3. Turn ON the ignition, with the engine OFF.
  4. Observe the HO2S bank 1 sensor 2 parameter with a scan tool.

Is the voltage more than the specified value?

900 mV

Go to Step 6

Go to Step 5

5

Measure the voltage between the HO2S 2 low signal circuit, on the engine harness side, and a good ground with a DMM. Refer to Circuit Testing in Wiring Systems.

Is the voltage more than the specified value?

100 mV

Go to Step 7

Go to Step 8

6

Important:  Disconnection of the powertrain control module (PCM) during testing may eliminate the voltage source that caused this fault.

Test the HO2S 2 high signal circuit for a short to voltage. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 13

Go to Step 10

7

Important:  Disconnection of the PCM during testing may eliminate the voltage source that caused this fault.

Test the HO2S 2 low signal circuit for a short to voltage. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 13

Go to Step 10

8

Inspect for the following that may affect the HO2S operation:

Notice: Refer to Silicon Contamination of Heated Oxygen Sensors Notice in the Preface section.

    • HO2S for contamination

Notice: Refer to Heated Oxygen and Oxygen Sensor Notice in the Preface section.

    • Chafed, burnt, cut, pinched, or otherwise damaged HO2S wiring
    • The HO2S must have a clean air reference in order to function properly. This clean air reference is obtained by way of the HO2S wires. Obstruction of the air reference and degraded HO2S performance could result from any attempt to repair the above conditions.
    • Exhaust system leaks or restrictions
    • Evaporative Emissions (EVAP) system malfunction--Inspect the EVAP control system. Refer to Inspection/Maintenance Evaporative Emission System Set .
    • Incorrect fuel pressure--Refer to Fuel System Diagnosis .

Did you find and correct the condition?

--

Go to Step 13

Go to Step 9

9

Test for shorted terminals and for poor connections at the HO2S 2. Refer to Testing for Intermittent Conditions and Poor Connections , Connector Repairs , and Heated Oxygen Sensor Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 13

Go to Step 11

10

Test for shorted terminals and for poor connections at the PCM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 13

Go to Step 12

11

Notice: Refer to Heated Oxygen Sensor Resistance Learn Reset Notice in the Preface section.

Replace the HO2S 2. Refer to Heated Oxygen Sensor Replacement - Bank 1 Sensor 2 .

Did you complete the replacement?

--

Go to Step 13

--

12

Replace the PCM. Refer to Powertrain Control Module Replacement .

Did you complete the replacement?

--

Go to Step 13

--

13

  1. Clear the DTCs with a scan tool.
  2. Turn OFF the ignition for 60 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records.

Did the DTC fail this ignition?

--

Go to Step 2

Go to Step 14

14

Observe the Capture Info with a scan tool.

Are there any DTCs that have not been diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK