Table 1: | HO2S Voltages |
The wide band heated oxygen sensor (HO2S) measures the amount of oxygen in the Exhaust System and provides more information than the switching style HO2S. The wide band sensor consists of an oxygen sensing cell, an oxygen pumping cell, and a heater. The exhaust gas sample passes through a diffusion gap between the sensing cell and the pumping cell. The engine control module (ECM) supplies a voltage to the HO2S and uses this voltage as a reference to the amount of oxygen in the Exhaust System. An electronic circuit within the ECM controls the pump current through the oxygen pumping cell in order to maintain a constant voltage in the oxygen sensing cell. The ECM monitors the voltage variation in the sensing cell and attempts to keep the voltage constant by increasing or decreasing the amount of current flow, or oxygen ion flow, to the pumping cell. By measuring the amount of current required to maintain the voltage in the sensing cell, the ECM can determine the concentration of oxygen in the exhaust. The HO2S voltage is displayed as a lambda value. A lambda value of 1 is equal to a stoichiometric air fuel ratio of 14.7:1. Under normal operating conditions, the lambda value will remain around 1. When the fuel system is lean, the oxygen level will be high and the lambda signal will be high or more than 1. When the fuel system is rich, the oxygen level will be low, and the lambda signal will be low or less than 1. The ECM uses this information to maintain the correct air/fuel ratio.
This diagnostic procedure supports the following DTCs.
• | DTC P2231 HO2S Signal Circuit Shorted to Heater Circuit Bank 1 Sensor 1 |
• | DTC P2234 HO2S Signal Circuit Shorted to Heater Circuit Bank 2 Sensor 1 |
• | Before the ECM can report DTC P2231 or P2234 failed, DTCs P0030, P0031, P0032, P0050, P0051, P0052, P0053, P0059, P0130, P0135, P0150, and P0155 must run and pass. |
• | The HO2S heater control is enabled. |
• | The HO2S heater duty cycle is more than 5 percent. |
• | The HO2S heater is at operating temperature for more than 10 seconds. |
• | The ECM does not detect a misfire condition. |
• | The fuel injectors are enabled. |
• | The ignition 1 voltage is between 10.5-18 volts. |
• | The calculated exhaust temperature is less than 800°C (1,472°F). |
• | The volumetric efficiency is steady within 3 percent of the air flow into the engine for 10 ms. |
• | DTC P2231 and P2234 run continuously once the above conditions are met. |
• | The ECM detects the internal HO2S voltage signal change is more than 100 mV as the heater control switches. |
• | The above condition occurs 18 times within 10 seconds. |
• | The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails. |
• | The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records. |
• | The control module turns OFF the malfunction indicator lamp (MIL) after 4 consecutive ignition cycles that the diagnostic runs and does not fail. |
• | A current DTC, Last Test Failed, clears when the diagnostic runs and passes. |
• | A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic. |
• | Clear the MIL and the DTC with a scan tool. |
• | Use the J 35616 Connector Test Adapter Kit for any test that requires probing the ECM harness connector or a component harness connector. |
• | The lower connector of the ECM is connector C1 and the upper connector of the ECM is connector C2. Refer to Engine Controls Component Views . |
• | The front wide band sensors do not toggle or switch like a switching HO2S. The front HO2S signals will be relatively stable for an idling engine. |
• | For an intermittent condition, refer to Intermittent Conditions . |
• | The following table illustrates the typical voltages for the HO2S circuits. |
| |||||
---|---|---|---|---|---|
HO2S Circuit | Voltage | ||||
Heater Control | 4.6-5.0 V | ||||
Heater Supply Voltage | B+ | ||||
Reference Voltage | 2.6-3.1 V | ||||
Low Reference | 2.2-2.7 V | ||||
Pump Current | Less than 0.5 V | ||||
Input Pump Current | Less than 0.5 V |
The numbers below refer to the step numbers on the diagnostic table.
This step determines if the condition exists. If there is a condition with the HO2S circuits, the ECM commands open loop for the applicable sensor.
This step tests for a bias voltage across the reference voltage circuit and the low reference circuit of the HO2S. The bias voltage that you are measuring, is the voltage difference between the reference voltage circuit and the low reference circuit. If the reference voltage circuit or the low reference circuit of the HO2S is shorted to a voltage, the bias voltage will be more than the specified value, which indicates there is a condition with the circuits.
A rich or lean fuel injector can cause this DTC to set. Perform the Fuel Injector Balance Test with Special Tool to verify that the fuel injectors are delivering fuel equally. Replace any fuel injector that has a fuel pressure drop, or resistance measurement, that is not consistent in comparison to the other fuel injectors. Refer to Fuel Injector Balance Test with Special Tool .
Step | Action | Values | Yes | No |
---|---|---|---|---|
Schematic Reference: Engine Controls Schematics Connector End View Reference: Engine Control Module Connector End Views or Engine Controls Connector End Views | ||||
1 | Did you perform the Diagnostic System Check-Engine Controls? | -- | Go to Step 2 | |
Important: DTC P2231 is for bank 1 sensor 1 and DTC P2234 is for bank 2 sensor 1.
Does the scan tool display Closed Loop? | -- | Go to Step 3 | Go to Step 4 | |
3 |
Did the DTC fail this ignition? | -- | Go to Step 4 | Go to Diagnostic Aids |
4 | Is DTC P0131, P0132, P0151, or P0152 also set? | -- | Go to Step 5 | |
Is the voltage within the specified range? | 350-550 mV | Go to Step 6 | Go to Step 7 | |
6 | Measure the voltage between the input pump current circuit and a good ground with a DMM. Is the voltage less than the specified value? | 1.0 V | Go to Step 9 | Go to Step 8 |
7 |
Is OL displayed on the DMM? | -- | Go to Step 10 | Go to Step 12 |
8 |
Is OL displayed on the DMM? | -- | Go to Step 10 | Go to Step 12 |
9 | Test for shorted terminals and for poor connections at the HO2S. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 15 | Go to Step 11 |
10 | Test for shorted terminals and for poor connections at the ECM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 15 | Go to Step 14 |
Did you find and correct the condition? | -- | Go to Step 15 | Go to Step 13 | |
12 | Repair the reference voltage circuit or the input pump current circuit of the HO2S for being shorted to the heater control circuit. Did you complete the repair? | -- | Go to Step 15 | -- |
13 | Replace the HO2S. Refer to the appropriate procedure: Did you complete the replacement? | -- | Go to Step 15 | -- |
14 | Replace the ECM. Refer to Engine Control Module Replacement . Did you complete the replacement? | -- | Go to Step 15 | -- |
15 |
Did the DTC fail this ignition? | -- | Go to Step 2 | Go to Step 16 |
16 | Observe the Capture Info with a scan tool. Are there any DTCs that have not been diagnosed? | -- | System OK |